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Abstract

We develop a tuned center-difference (TCD) scheme optimized for large-eddy simulations (LES) using a method

proposed by Ghosal. For LES of weakly compressible decaying turbulence, these optimized stencils are shown to

provide superior performance when compared to higher-order centered schemes with the same stencil width. A hybrid

method combining the TCD stencil with a weighted essentially non-oscillatory (WENO) method is then constructed for

use in the LES of strongly compressible, shock-driven flows. The user-specified, optimum WENO weights are chosen to

match those of the TCD scheme. It is expected that these weights will be achieved automatically in regions of smooth

flow away from shocks, but in practice a switch is found to be necessary. The hybrid TCD–WENO scheme is shown to

work well for unsteady gas-dynamic flows in one and two dimensions.

� 2003 Published by Elsevier Inc.
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1. Introduction

It has been observed [5,12] that the success of large eddy simulations (LES) depends not only on the

subgrid stress model employed, but also on the numerical approximation of derivatives in the advection

terms on the resolved scales. The most successful approaches have utilized spectral methods or the spectral-

like methods comprised of the class of high-order compact (Pad�e) finite difference approximations. Both of

these highly accurate methods are global in nature and are characterized by their fidelity in phase across a

wide range of scales. Spectral methods, of course, have zero phase errors, while compact schemes have

substantial phase errors only for the smallest resolved scales [9]. Unfortunately the non-local dependence of

these approaches renders them ill-suited for a variety of problems such as flows containing strong shocks
and flows in complex geometries. Furthermore, they can introduce complications and non-optimal effi-

ciency when implemented in parallel codes, or when integrated with techniques such as adaptive mesh

refinement (AMR). Attempts (e.g. [3,6]) have been made to use spectral methods in the calculation of
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compressible Euler flows in the presences of strong shocks, in which cases additional viscosity is needed to

insure stability and post processing techniques are used to address ringing. While this approach is inter-

esting, it has yet to be shown to be well suited for LES.
In the first part of this paper we investigate the role of the phase errors relative to formal order of

accuracy in the resolved-scale calculations of LES. This is done by the development of explicit, second-

order 5-point and fourth-order 7-point centered finite-difference stencils optimized for LES. Examples of

weakly compressible turbulence calculations are presented and favorable results are found when compared

against direct numerical simulations (DNS). These stencils, being local in nature and computationally

inexpensive, have certain advantages over their non-local counterparts. In the second part we exploit some

of these properties in formulating a hybrid center-difference-WENO scheme for the study of compressible

turbulence in the presence of shocks.
2. Tuned center-difference stencil for LES

We first discuss, in the context of explicit centered stencils, the relation between formal order of accuracy

and bandwidth fidelity. This is followed by a description Ghosal�s [4] measure of truncation error resulting

from the discretized Navier–Stokes equations applied to turbulent flows, which is then used in optimizing

bandwidth at the expense of order of accuracy. We refer to such stencils as tuned center-difference (TCD).
Finally we present examples of LES calculations using these new stencils, and good agreement with DNS is

obtained.

2.1. Wide center-difference (free parameter)

In using a finite-difference representation of the first derivative, there are two related but different

concepts in analyzing the fidelity of a numerical difference operator: formal order of accuracy and the

dispersion relation. Taylor series analysis is a local tool that provides the order of accuracy, while Fourier

analysis is used to investigate the dispersion relation. Utilizing a concept often called bandwidth optimi-

zation in aero-acoustics [22], we show that formal accuracy can be sacrificed in exchange for better dis-

persion properties in the construction of an explicit center-difference scheme to represent the first derivative.

Recognizing that practical and computational concerns are best served by relatively compact stencils, at-
tention is presently restricted to stencils of at most seven points. Let Dx to be the uniform grid spacing and

define the general center-difference operator D as

Df ðxÞ ¼ 1

Dx

Xj¼3

j¼1

djðf ðxþ jDxÞ � f ðx� jDxÞÞ: ð1Þ

Then, by standard Taylor series expansion about Dx ¼ 0,

Df ðxÞ ¼ ð2d1 þ 4d2 þ 6d3Þ
df
dx
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where the derivatives of f ðxÞ are evaluated at Dx ¼ 0. By construction, any scheme with constant coeffi-

cients which satisfies 2d1 þ 4d2 þ 6d3 ¼ 1 is an approximation to the first derivative. For a given set of
coefficients dj, the next non-zero term in the expansion defines the formal order of accuracy of the operator.

For example, the choice of d1 ¼ 3=4, d2 ¼ �1=10 and d3 ¼ 1=60 leads to the standard sixth-order 7-point

stencil, and d1 ¼ 2=3, d2 ¼ �1=12 with d3 ¼ 0 produces the common fourth-order, 5-point stencil.
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An alternate approach to measuring the fidelity of an approximate derivative is to examine the eigen-

values of resulting operator. In the motivational context of a first-order wave equation, this is equivalent to

studying the dispersion relation of the approximate (spatially discrete) equation. Assuming for simplicity,
periodicity over the spacial domain, single Fourier mode analysis of the linear operator results in

DexpðijxÞ ¼ i~jðjÞ expðijxÞ; ð3Þ

where j is the wavenumber and ~jðjÞ, which defines the dispersion relation for the operator, is referred to as

the modified wavenumber. A method has spectral accuracy over the resolved scales if ~jðjÞ ¼ j, while the

spectral-like methods [9] approximate j well for all but the highest resolved wavenumbers. Similarly one

finds for D defined in (1) that

~jðjÞ ¼ 1

Dx
½2d1 sinðjDxÞ þ 2d2 sinð2jDxÞ þ 2d3 sinð3jDxÞ�; ð4Þ

which, like Pad�e derivatives, tends to zero for the highest resolved wavenumbers.

As a consequence of the centered nature of (1), ~jðjÞ is purely real, implying there are no dissipative

errors when applied to the first-order wave equation or, as is the case in LES calculations, the advection

terms in the momentum equation. Note that there are dispersion errors, particularly for the smaller re-

solved scales. One could increase the number of points in the stencil so that ~j includes more terms in this

series for j, but in doing so the advantages of a small, spatially compact explicit stencil, would be lost.

The approach taken in this paper is to relax the order of accuracy requirements by insisting only that the
7-point stencil be fourth-order accurate and that the 5-point stencil be second-order. This relaxation, while

retaining the centered form of the stencils, provides a scalar degree of freedom to be exploited in improving

the modified wavenumber behavior. For the 7-point stencil, if a ¼ d3 is taken to be a free parameter, then

the requirement of fourth-order accuracy leads to

d1 ¼ 2
3
þ 5a;

d2 ¼ � 1
12
� 4a;

ð5Þ

while for the 5-point stencil d3 ¼ 0, take a ¼ d2 and the constraint of second-order accuracy gives

d1 ¼ 1
2
� 2a: ð6Þ

For such stencils, different choices of a can have substantial affects on the modified wavenumber ~jðjÞ. In
the following section a measure is discussed that allows for a rational choice of a for LES calculations.

2.2. Ghosal truncation error

For general applications, several optimization procedures have been suggested for improving the

bandwidth of ~j based on minimizing weighted integral measures of the the error ðj� ~jÞxðjÞ [18,22,23]. A
certain degree of freedom in the choice of the weighting function xðjÞ is introduced by such methods. The

approach followed in this paper obviates the need to experiment with the weighting function by utilizing an

analysis of the governing equations in the presence of turbulent flow as a method of bandwidth tuning.
To better understand the role of dispersion error and modified wave number behavior in LES calcu-

lations, Ghosal [4,5] formulated an expression for the error in the resolved scale kinetic energy produced by

one time step of the Navier–Stokes equation discretized by methods producing known modified wave-

numbers, for example, explicit differences, Pad�e schemes and spectral methods. To derive this expression for

the truncation error EðFDÞðj; ~jðjÞÞ, Ghosal assumed that the flow field itself represents homogeneous in-

compressible isotropic turbulence with a velocity (energy) spectrum EðjÞ well described by the Von-

K€arman form
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EðjÞ ¼ aj4

ðbþ j2Þ17=6
; ð7Þ

which has the desired properties EðjÞ � j4 as j ! 0 and EðjÞ � j�5=3 as j ! 1.

While the reader is referred to Ghosal [4] for details, for completeness we presently summarize the basic

argument and quote the important result. Beginning with the incompressible Navier–Stokes equations,
formally written as ot~u ¼ N~u, an equation for the evolution of the error~e � P~u� u0! on the resolved scales

is formed

o~e
ot

¼ N0P~u�N0~u0 þ ðPN�N0PÞ~u; ð8Þ

where~u and N represent the exact velocity field and the (nonlinear) spacial operator, respectively, P is the

projection operator to the resolved scales and u0! and N0 are the numerical solution and the discretized
Navier–Stokes operator, respectively. Assuming~e ¼ 0 initially, the term

Er
�! � ðPN�N0PÞ~u ð9Þ

is defined as the �error�. Periodic boundary conditions are assumed and this error is transformed to Fourier

space replacing derivatives with wavevectors, and approximate derivatives with modified wavenumber

vectors. Ghosal then identifies terms in the resulting EriðkÞ due to truncation error and to aliasing error.

Focusing on the truncation error, the assumption is made of statistical isotropy, and spherical averaging is

employed in calculating the power spectrum, resulting in an expression which is a function of the magnitude

wave vector j ¼ jkj. During the averaging procedure, the familiar joint-normal hypothesis [2] is employed
to eliminate third and higher-order correlations. Via these steps, an expression for spectra of the truncation

error energy is obtained, EðFDÞ, that takes the form

EðFDÞðkÞ ¼ ½F1ðkÞ þ F2ðkÞ�
X
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; ð10Þ

where

Im ¼ k
Z 1

0

dn
Z nþ1

n�1j j
dgEðknÞE kgð ÞWm n; gð Þ; ð11Þ
F1ðkÞ ¼
1
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Dimnðk; ~kÞ � Pimnð~kÞ � Pimn kð Þ; ð13Þ
PimnðkÞ ¼
ðknPim þ kmPinÞ=2 if k 6¼ 0;
0 otherwise

� �
; ð14Þ
Pij ¼ dij � kikj=k2; ð15Þ

and fgX denotes a spherical average in wavenumber space. This expression gives, as a function of the

modified wavenumber and assumed energy spectra of the flow, a measure of the truncation error that is

introduced on the resolved scales by the choice of the numerical representation of the derivatives. As such it
provides an ideal way to evaluate the performance of different center-difference stencils in the numerical

simulation of turbulent flow.

2.3. TCD stencils for LES: 7-point, 5-point

For a given stencil width and order of accuracy, our approach is to define the TCD stencil as the one

which minimizes the total truncation error on the resolved scales,

Total ErrorðaÞ ¼
Z p=Dx

0

EðFDÞðj; ~jðj; aÞÞdj: ð16Þ

Assuming that the majority of the dissipation takes place on subgrid scales, we put m ¼ 0 in (10). In order to

optimize the center-difference stencils with respect to (16), it is necessary to choose a unique energy spectra

of the form given in (7). The values a ¼ 2:682 and b ¼ 0:417 were used to place p=Dx in the inertial range of

(7). The resolved portion of the resulting spectra, j < p=Dx, then includes the beginning of the energy-

cascade part of j-space. This is compatible with the goal of performing LES calculations. These values

place the maxima at j ¼ 1. We remark that the results (i.e., a) of the optimization were found to be rather

insensitive to the particular form (values of a and b) of (7). The total truncation error on the resolved scales

(16) was evaluated numerically over a range of the free parameter a for both the 5- and 7-point stencils. It
was found to indeed have a minimum as shown in Fig. 1.

The minimization procedure leads to a value of a ¼ �0:197 for a 5-point stencil and a ¼ 0:0605 for the

tuned (i.e., optimal) 7-point stencil; see Tables 1 and 2 for a comparison of the standard and optimal

stencils. An examination of the modified wavenumber shows improvement in the approximation of the

derivative over a wider range of wavenumbers as shown in Fig. 2.
2.4. LES of decaying compressible turbulence

Using compact finite-difference Pad�e schemes and a structure-based model [19] for the subgrid stresses,

Kosovic et al. [8] obtained excellent agreement with direct numerical (DNS) computations of decaying

isotropic compressible turbulence with a turbulent Mach number Mt � 0:4. Here, we report the results of

repeating the same LES calculations with the same subgrid model, initial conditions, and code. We change

only the numerical derivative scheme to use either standard center-difference or the TCD in place of the
Pad�e method. In this way the direct affect of the TCD stencil is investigated.

As outlined in [8], a density weighted (Favre-filtered) form of the Navier–Stokes equation is utilized and

a stretched vortex subgrid-scale model provides both the subgrid stresses sij and the turbulent temperature

flux qi; triple correlations and the subgrid viscous work are assumed small and are neglected. References

[8,14] as well as [19] provide details of the model; briefly, within each cell the stress is given by
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Table 1

Five-point stencils, second and fourth order

Optimized Standard

d1 0.894 2/3

d2 )0.197 )1/12
d3 0 0

Table 2

Seven-point stencils, fourth and sixth order

Optimized Standard

d1 0:969166 3/4

d2 �0:32533 )1/10
d3 0.0605 1/60
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sij ¼ qKðdij � evi e
v
jÞ; K ¼

Z 1

kc

EðkÞdk; ð17Þ

where qK is the subgrid energy, ev ¼ ðev1; ev2; ev3Þ is the unit vector of the subgrid vortex axis and EðkÞ is the
energy spectra resulting from assuming a Lundgren type stretched vortex

EðkÞ ¼ Ko�
2=3k�5=3 exp½�2k2m=ð3jajÞ�; ð18Þ

where Ko as the Kolmogorov prefactor, � is the local cell-averaged dissipation and a represents the axial

strain along the subgrid vortex axis. Assuming that, on the subgrid scale, temperature maybe modeled as a
passive scalar and using the resolved scale temperature ~T , the turbulent temperature flux is computed using

a tensor-diffusivity model

qi ¼
1

2
DK1=2ðdij � evi e

v
jÞ
o ~T
oxj

; ð19Þ

where D is the local mesh size. The numerical method is detailed in [15]: No explicit dealiasing of the

nonlinear terms is performed, instead the advective term is discretized using the skew-symmetric form
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and a spherical spectral filter is applied after each time step. Owing to the fact that the shear viscosity

coefficient depends on the temperature as l ¼ T 0:76, the viscous term is computed by applying the first

derivative twice.

We compare LES results with the detailed calculations of decaying compressible turbulence at

moderate turbulent Mach number [15]. In particular comparison is made with the representative study,
case D9, DNS of turbulence in a periodic domain performed with a 10th-order Pad�e scheme and 2563

grid points. The flow is characterized by an initial spectrum peak at ko ¼ 4 and turbulent Mach

number of Mt ¼ 0:488 with a Taylor Reynolds number of Rek ¼ 175. As in [8] the initial conditions for

323 LES were obtained by filtering the DNS data using spectral filter with a cutoff wavenumber of

kc ¼ 16 after approximately one eddy-turnover period in order to avoid initial transient associated with

startup.

The results of the decay of the kinetic energy on the resolved scales are shown in Fig. 3. The decay rates

are significantly improved by using the TCD stencils. LES with non-optimal stencils (other values of the
parameter a) can greatly over or under estimate the decay. While the decay rate was rather insensitive to

the representation of the derivative used in the viscous term on the resolved scales, we mention that the

computed spectra is nearly identical to that shown in [15] Fig. 3(a) with the caveat that the energy pile-up in

the highest resolved wavenumbers can be greatly reduced by using spectral derivatives in the viscous term.

Ghosal�s analysis pertains to incompressible flow, but the results of our numerical experiments dem-

onstrate that these optimized center-difference stencils work well with weakly compressible flows. This may

be explained in part by the observation that, while shocklets form in such a flow, the majority of the

dissipation occurs in the solenoidal part of the velocity field. For the purpose of comparison a 323 run is
shown in Fig. 3 obtained from an LES calculation using formally fifth-order WENO with Roe�s approx-
imate Riemann solver. In this simulation, WENO effectively supplies all of the dissipation by means of large

numerical diffusion.
3. Hybrid TCD–WENO scheme

WENO schemes [7,11] excel at capturing moving discontinuities such as shock waves and contact sur-
faces, while reverting to formally high order in smooth regions by utilizing, at each location, a potentially
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unique stencil constructed from a superposition of upwind biased candidates. Unfortunately, these schemes

introduce substantial numerical dissipation as well as phase errors. These problems can be related to two

sources: WENO�s �optimal stencil�, and the upwinding nature of the candidate stencils. Working within the

WENO framework, several investigators have tried to address these shortcomings. Weirs and Candler [21]
developed a symmetric WENO optimal stencil with low dissipation errors, which has been extended by Lin

and Hu [10]. Additionally Wang and Chen [20] improved the dispersion relations for the candidate stencils.

While these approaches all arguably lead to improved fidelity, they do not perform well in LES calculations

for a subtle reason, namely, that even away from shocks and strong discontinuities, WENO does not

consistently create a particular stencil, with the consequence that the dispersion relation is unpredictable.

Worse yet, as WENO seldom obtains its optimal stencil, the upwinding bias of the candidate stencils often

results in dissipation in the high wavenumbers which makes them poorly suited for LES [12]. Hybrid

schemes [1,13], which utilize WENO type methods in regions of discontinuities and Pad�e derivatives
elsewhere have been advanced to address this problem. Such methods have their own difficulties, such as

formulating a criteria which determines when and where the Pad�e derivatives are to be used, and insuring

that differences in dispersion relations where the different numerical methods meet do not generate excessive

errors. Adams and Shariff [1] computed fluxes with an ENO scheme at discontinuities and standard Pad�e
elsewhere, while Pirozzoli [13] used WENO and a modified upwinding Pad�e, presumably for stability or

perhaps to damp such oscillations.

As a demonstration of the utility of our TCD stencils we construct a hybrid method using WENO at

discontinuities and tuned center-difference in the smooth regions of the flow. To minimize the generation of
noise at regions where TCD transitions to WENO, the �optimal stencil� is modified to match the TCD. We

refer to such a WENO as tuned to blend well with the TCD.
3.1. Tuned WENO

We now outline how flux derivatives are computed with a tuned WENO method. In the hybrid scheme,

such computations are to be performed at points where the flow is discontinuous or nearly so. Initially, the

general flux f ðxÞ is split into two parts, one with a strictly non-negative derivative and the other non-po-
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sitive: f ðxÞ ¼ f þðxÞ þ f �ðxÞ. In our calculations this splitting was done in characteristic space using a Roe-

averaged Jacobian decomposition. Following the standard convention, our discussion will assume f þðxÞ
and the superscript will be suppressed; formulas for f �ðxÞ maybe obtained by symmetry about xjþ1=2.

In general, with WENO and other finite volume based methods, the procedure for computing the de-

rivative at the jth location is to first interpolate flux values on the half-grid points f̂j�1=2 and f̂jþ1=2 and then

form the difference

df
dx

¼ 1

Dx
f̂jþ1=2

�
� f̂j�1=2

�
: ð20Þ

The interpolated values are the weighted sum of individual interpolations qkjjþ1=2 each produced by a

candidate stencil ak;l and combined according to coefficients wk based on a fixed (referred to in the literature

as �optimal�) set Ck but weighted by the local smoothness ISk across each stencil. To compute WENO

derivatives which will ideally revert to 7-point TCD in smooth regions requires the use of an additional

candidate stencil when compared to the standard r ¼ 3 (see [7]) method. Our approach follows that of

Weirs and Candler [21], differing only in the values of Ck as we have a different target stencil. Specifically,

f̂jþ1=2 ¼
X3
k¼0

xkqk; ð21Þ
qkjjþ1=2 ¼
X3
l¼1

ak;lf ðxj�2þkþlÞ: ð22Þ

The weights are defined by

ak ¼
Ck

ð�þ ISkÞ2
ð23Þ

and

xk ¼
akP3

k¼0 ak
; ð24Þ

where the smoothness measurement on the stencil k is ISk given by

ISk ¼
X2
m¼1

Z xjþ1=2

xj�1=2

ðDxÞ2m�1 omqk
oxm

� �2

dx; ð25Þ

which may be computed as

ISk ¼
X2
m¼1

X2
l¼1

dl;m;kf ðuj�1þlþkÞ
 !2

; ð26Þ

and � is a small regularization parameter. The values for the smoothness measurement coefficients dl;m;k and
the candidate stencil coefficients ak;l are rather standard and are found in Tables 3–5. Where the flow is

equally smooth across the candidate interpolation stencils, the superposition weights wk tend to the values

Ck. In standard WENO these values have been chosen so that that (20) will, in these areas, be of the highest

possible formal order of accuracy; but for tuned WENO, values are chosen so that (20) will be equivalent to

the TCD scheme. That is to say, Cks are chosen to satisfy



Table 3

Interpolation superposition weights

k Optimal weights

0 1 2 3

Ck 0.1815 0.31845 0.31845 0.1815

Table 4

Candidate stencil coefficients

k l ¼ 1 l ¼ 2 l ¼ 3

ak;l: candidate stencils

0 2/6 )7/6 11/6

1 )1/6 5/6 2/6

2 2/6 5/6 )1/6
3 11/6 )7/6 2/6

Table 5

Candidate stencil smoothness coefficients

k l ¼ 1 l ¼ 2 l ¼ 3

dk;1;l: smoothness measures

0 1/2 )4/2 3/2

1 )1/2 0 1/2

2 3/2 )4/2 1/2

3 )5/2 8/2 )3/2

d3
k;2;l: smoothness measures

All k
ffiffiffiffiffiffiffiffiffiffiffiffi
13=12

p
�2

ffiffiffiffiffiffiffiffiffiffiffiffi
13=12

p ffiffiffiffiffiffiffiffiffiffiffiffi
13=12

p
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Xk¼3

k¼1

dkðf ðxjþkÞ � f ðxj�kÞÞ ¼
X3
k¼0

Ck

X3
l¼1

ak;lðf ðxj�2þkþlÞ � f ðxj�3þkþlÞÞ; ð27Þ

where the dks are the center-difference values given in Table 2. Solving for Ck, one finds for the 7-point

stencil defined in (5) that C0 ¼ C3 ¼ 3a and C1 ¼ C2 ¼ 1=2� 3a. In particular, for the tuned stencil

(a ¼ 0:0605) the values are given in Table 3.

3.2. Hybrid methodology

The previous section detailed the method of calculating flux derivatives with a tuned WENO scheme that
in sufficiently smooth regions is equivalent to the TCD stencils that perform well in LES simulations. In

principle WENO should go smoothly to TCD in flow regions away from shocks and other effective dis-

continuities, but in practice such a method alone is not sufficient as the resolved scale field of most turbulent

flows are not sufficiently smooth to allow WENO to revert to this stencil. In fact repeating the 323 LES

calculations of Section 2.4 with tuned WENO produce results that are not perceptibly better than the

standard WENO LES results shown in Fig. 3(b). Instead a switch is necessary to limit the regions of

WENO activity to shocks and other discontinuities and to force explicit use of the TCD elsewhere. In his

hybrid Pad�e-WENO scheme, Pirozzoli [13] suggests a switch based on the criteria jf ðxjþ1Þ � f ðxjÞj < b (for
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Fig. 4. Linear one-dimensional wave equation with periodic boundary conditions and kmax ¼ 20. The thick dashed line represents the

exact solution and the thin line shows the computed solutions on which locations where derivatives are computed by WENO are

indicated by a }. (a) N ¼ 200 points; (b) N ¼ 300 points.
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some value b) to determine when WENO is appropriate, while Adams and Shariff [1] use a similar condition

as well as test for a local maximum. We propose instead a scale-independent measure of the variance kjþ1=2

of the smoothness over the candidate stencils potentially used in the calculation of f̂jþ1=2

kjþ1=2 ¼
maxk ISk

mink ISk þ �
; ð28Þ

where � is a small regularization parameter, the value 10�4 was used. We require that tuned WENO is used

in calculating the flux derivatives at points where kjþ1=2 exceeds a given threshold kmax as well as for the two

neighboring points. The time stepping in all of our calculations was done with a fourth-order low storage

Runge–Kutta method.

To demonstrate that such a switch is a viable approach, Fig. 4 shows the results using a threshold value

of kmax ¼ 20 after one period (t ¼ 2) of evolution of the one-dimensional wave equation

ou
ot

þ ou
ox

¼ 0; 06 x6 2; ð29Þ

with periodic boundary conditions. The analytic form of the exact wave in Fig. 4 is that given by Jiang and

Shu [7]. Note that with the increase in the number of grid points, not only does the solution become better

resolved but the relative amount of WENO required decreases. This suggests that one could create similar

hybrid methods with better computational performance then is presently achieved. The switching presented
here is not intended to be an acceleration of WENO as the relatively expensive smoothness indicators are

calculated at each point.
4. Compressible flow examples using the hybrid method

4.1. Equations of motion

To demonstrate the hybrid TCD–WENO method, examples of one- and two-dimensional flow con-
taining shocks are presented. In particular the regions of the flow in which the different methods are used to
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compute the flux derivatives are indicated. This is done in part because of our interest in dispersion rela-

tions, and the belief that when performing LES, the less WENO the better from the standpoint of the

overall fidelity of the flow.
Written in conservative form the two-dimensional Euler equations appear as

oq

ot
þ oF

ox
þ oG

oy
¼ 0; ð30Þ

in which q ¼ ðq; qu; qv; qeÞT, and the flux vectors are given by

F ¼

qu
qu2 þ p
quv

uðqeþ pÞ

0BB@
1CCA; G ¼

qv
quvþ p
qv2 þ p
vðqeþ pÞ

0BB@
1CCA;

where q is the density, p the pressure and u; v are the velocities in the x and y directions, respectively. The

energy per unit mass, e, is related to the velocities and pressure by

e ¼ p
qðc� 1Þ þ

1

2
ðu2 þ v2Þ: ð31Þ

As outlined in the previous section, the determination of when to use center-difference as apposed to tuned-
WENO is based on the value of the measure kjþ1=2. When applied to the two-dimensional Euler equations,

kjþ1=2 is calculated for each element of F and G and the determination to, for example, use WENO in the

x-direction at a given location is based the maximum k computed from the elements of F at that location.

We have found that in evolving the Euler equations, Gibbs-like ringing at sharp contact surfaces or

shocks can be eliminated by requiring that WENO is used when kjþ1=2 is greater than kmax ¼ 150 and, if it is

necessary by this criteria to use tuned WENO at xj, it is also used at xj�1 and xjþ1 to insure that the

transition from WENO to center-difference is smooth. Note that the value of kmax differs from that in the

one-dimensional wave example. In our experience this value is equation-dependent, but appears to be
constant across initial conditions and resolutions for a given equation. For example, kmax was fixed for all

the one- and two-dimensional calculations presented here.

4.2. One-dimensional shock and entropy wave interaction

The evolution of the popular (e.g. [13,17,21]) test case representing a one-dimensional shock-entropy

wave interaction is computed with the hybrid TCD–WENO scheme and the results are presented here. The

initial conditions for the flow,

ðq; u; pÞ ¼ ð3:857142; 2:629369; 10:333333Þ; x < 2;
ð1þ 0:2 sinð5xÞ; 0; 1Þ; xP 2;

�
ð32Þ

result in the unsteady interaction of a Mach 3 shock with a sine entropy wave, and results at different times

are presented in Fig. 5. Note that the receding acoustic waves steepen behind the shock and give rise to

shocklets, in particular, the hybrid scheme recognizes this and uses tuned WENO when necessary. We find

no perceptible ringing where tuned WENO switches to the TCD stencil.

4.3. Two-dimensional Richtmyer–Meshkov flow

The development of a two-dimensional Richtmyer–Meshkov instability is calculated as a further ex-

ample of the hybrid TCD–WENO method. In this simulation, a Mach 3 shock travels down (from left to
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Fig. 5. Mach 3 shock and entropy wave interaction calculated with N ¼ 300 points and a c ¼ 1:4. Locations where derivatives are

computed by WENO are indicated by }. (a) t ¼ 0; (b) t ¼ 0:855; (c) t ¼ 1:277; (d) t ¼ 1:872.
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right in our plots) a two-dimensional tube with non-dimensional length 23 and width 2.5 and encounters a

density jump in the acquiescent gases of density ratio 1:2. At time t ¼ 0, the shock was initially located at

x ¼ 3:785 and the interface contact surface was chosen to be at x ¼ 5:5 and distorted from planar by a
multimode perturbation with random phases. The density interface is not discontinuous but is smoothed

across order 10 cells with a local tanh-like profile. The computational domain for calculations shown in

Fig. 6 was 1024� 128 grid points. To eliminate the so-called carbuncle phenomenon in grid aligned shocks,

the H-correction of Sanders et al. [16] was employed when calculating the tuned WENO flux derivatives.

The interaction of the pressure gradient across the shock with the density gradient at the interface results in

the deposition vorticity at this contact surface initiating mixing of the two gases. The transmitted shock

continues down the tube, reflects off the far wall and returns to re-shock the interface, leading to a further stage

of mixing. The images shown in Fig. 6 represent the development of this interface as well as the corresponding
vorticity and a measure of the use of WENO. The gray regions in plots labeled coverage indicate locations

where WENO was used in either the x or y flux derivative, while black regions correspond to WENO used in

both directions. In non-shaded regions, the tuned TCD stencil operated in both directions. Fig. 6(a) shows the



Fig. 6. A Mach 3 Richtmyer–Meshkov instability evolution with an initial 1:2 density ratio and c ¼ 1:4 in both gases, computed on a

domain of 1024� 128, with 310� 128 displayed. Vorticity, density and WENO coverage are shown at four successive times. For

coverage, black regions correspond to WENO used in both directions, gray indicates WENO was used in either the x or y directions

and white indicated that the TCD stencil operated in both directions. (a) t ¼ 9:56; (b) t ¼ 24:06; (c) t ¼ 38:54; (d) t ¼ 48:69.
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Fig. 7. A comparison of the coverage required at two different computational resolutions. For coverage key, see Fig. 6. (a) 512� 64

grid; (b) 1024� 128 grid.
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interface and the transmitted shock shortly after the initial interaction, but only the interface is visible in the

later figures as the shock has reflected from the boundary at the right, re-shocked the interface and exited the

displayed field of view. Note that the relative amount of WENO used in the area of the contact surface has

increased between times (a) and (b), during which interval the contact surface has experienced re-shock re-

sulting in sudden compression that steepens the local density gradients. As the flow continues to evolve, the
dissipation inherent in WENO smooths the near discontinuities at the contact surface to the extent that less

WENO is required in these regions, as can be seen in the later times (c) and (d).

As an example of the effect of grid size on the coverage, the computed solution vector at time (a) in Fig. 6

was filtered from a resolution of 1024� 128 to 512� 64 and used as the initial condition for a lower res-

olution run of just a few time steps. Comparison of coverage between Figs. 7(a) and (b) indicates how the

use of WENO in the hybrid scheme decreases in areas such as the contact surface as the resolution of the

flow improves.
5. Conclusions

Motivated by bandwidth optimization combined with the idea of truncation error, we have presented

tuned center-difference stencils which perform well in the resolved scale LES calculations of decaying

compressible turbulence. In doing so, the role of the dispersion relation (i.e., modified wavenumber) was

seen to play a more important role than the formal order of accuracy in the success of a scheme. We further

integrated these simple stencils into a robust hybrid TCD–WENO scheme capable of simulating flows with
strong shocks and contact surfaces. An investigation of the amount of WENO used in two-dimensional

simulations of the evolution of a Richtmyer–Meshkov instability shows that increased resolution yields less

WENO in the area of the contact surface. One could envision using techniques such as adaptive mesh

refinement combined with our hybrid method to isolate the use of WENO to the capturable but unre-

solvable features such as strong shocks.
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